SYMPHONY N1 / OLEKSIY KOVAL
This composition has been written using THE BEAUTIFUL FORMULA LANGUAGE
THE BEAUTIFUL FORMULA LANGUAGE allows to create new compositions and to notate already existing paintings.
We are constantly working on the improvement of THE BEAUTIFUL FORMULA LANGUAGE. Please, feel free to send us your suggestion, comment or any kind of question.
Oleksiy Koval and THE BEAUTIFUL FORMULA COLLECTIVE
SYMPHONY N1, Oleksiy Koval, 2014
M 1/9
E a,b,c,d,e,f ≈
R
a 1,5,2,3,8 (x 3)
b 1. 1+1+1+1+1 (3 x)
b 2. 2+2+2+2+2 (3 x)
b 3. 3+3+3+3+3 (3 x)
b 4. 5+5+5+5+5 (3 x)
b 5. 8+8+8+8+8 (3 x)
b 2. 2+2+2+2+2 (3 x)
b 3. 3+3+3+3+3 (3 x)
b 4. 5+5+5+5+5 (3 x)
b 5. 8+8+8+8+8 (3 x)
c 1. 1+1+1+1+1 (6 x)
c 2. 2+2+2+2+2 (6 x)
c 3. 3+3+3+3+3 (6 x)
c 4. 5+5+5+5+5 (6 x)
c 5. 8+8+8+8+8 (6 x)
c 2. 2+2+2+2+2 (6 x)
c 3. 3+3+3+3+3 (6 x)
c 4. 5+5+5+5+5 (6 x)
c 5. 8+8+8+8+8 (6 x)
d 1,5,2,3,8 (x 3)
e 1. 1+1+1+1+1 (9 x)
e 2. 2+2+2+2+2 (9 x)
e 3. 3+3+3+3+3 (9 x)
e 4. 5+5+5+5+5 (9 x)
e 5. 8+8+8+8+8 (9 x)
e 2. 2+2+2+2+2 (9 x)
e 3. 3+3+3+3+3 (9 x)
e 4. 5+5+5+5+5 (9 x)
e 5. 8+8+8+8+8 (9 x)
f -,-,-,-,- (1-8)
P
1. [*a]
2. *b 1.
3. [*a]
4. (2.) + b 1. + c 1.
5. [*a,d] d > 1{3[a]
6. (4.) + b 1. + c 1. + e 1.
7. f
8. [*a,d] d > 1{4[a]
9. (6.) + b 2. + c 2. + e 2.
10. f
11. [*a,d] d > 1{5[a]
12. (9.) + b 3. + c 3. + e 3.
13. f
14. [*a,d] d > 1{6[a]
15. (12.) + b 4. + c 4. + e 4.
16. f
17. [*a,d] d > 1{7[a]
18. (15.) + b 5. + c 5. + e 5.
19. f
2. *b 1.
3. [*a]
4. (2.) + b 1. + c 1.
5. [*a,d] d > 1{3[a]
6. (4.) + b 1. + c 1. + e 1.
7. f
8. [*a,d] d > 1{4[a]
9. (6.) + b 2. + c 2. + e 2.
10. f
11. [*a,d] d > 1{5[a]
12. (9.) + b 3. + c 3. + e 3.
13. f
14. [*a,d] d > 1{6[a]
15. (12.) + b 4. + c 4. + e 4.
16. f
17. [*a,d] d > 1{7[a]
18. (15.) + b 5. + c 5. + e 5.
19. f
Signs and symbols:
M meter
A area
U unit
R rhythmical motive
E element
P procedure
# entry
A area
U unit
R rhythmical motive
E element
P procedure
# entry
* hits the meter
∞ number of entries flexible
1 number of entries
|| order fixed
[] within the same area
> n occupy n
{ n out of n possible
+ has to touch
≠ not
V vertical
H horizontal
F flexibel
(n) size of unit
≈ size of the unit is corresponding for all elements
∞ number of entries flexible
1 number of entries
|| order fixed
[] within the same area
> n occupy n
{ n out of n possible
+ has to touch
≠ not
V vertical
H horizontal
F flexibel
(n) size of unit
≈ size of the unit is corresponding for all elements
Comments
Post a Comment